Saving Space by Dynamic Algebraization Based on Tree Decomposition: Minimum Dominating Set
نویسندگان
چکیده
An algorithm is presented that solves the Minimum Dominating Set problem exactly using polynomial space based on dynamic programming for a tree decomposition. A direct application of dynamic programming based on a tree decomposition would result in an exponential space algorithm, but we use zeta transforms to obtain a polynomial space algorithm in exchange for a moderate increase of the time. This framework was pioneered by Lokshtanov and Nederlof 2010 and adapted to a dynamic setting by Fürer and Yu 2017. Our space-efficient algorithm is a parametrized algorithm based on tree-depth and treewidth. The naive algorithm for Minimum Dominating Set runs in O(2) time. Most of the previous works have focused on time complexity. But space optimization is a crucial aspect of algorithm design, since in several scenarios space is a more valuable resource than time. Our parametrized algorithm runs in O(3), and its space complexity is O(nk), where d is the depth and k is the width of the given tree decomposition. We observe that Reed’s 1992 algorithm constructing a tree decomposition of a graph uses only polynomial space. So, even if the tree decomposition is not given, we still obtain an efficient polynomial space algorithm. There are some other algorithms which use polynomial space for this problem, but they are not efficient for graphs with small tree depth.
منابع مشابه
Space Saving by Dynamic Algebraization
Dynamic programming is widely used for exact computations based on tree decompositions of graphs. However, the space complexity is usually exponential in the treewidth. We study the problem of designing efficient dynamic programming algorithm based on tree decompositions in polynomial space. We show how to construct a tree decomposition and extend the algebraic techniques of Lokshtanov and Nede...
متن کاملTwo Birds with One Stone: The Best of Branchwidth and Treewidth with One Algorithm
In this paper we introduce semi-nice tree-decompositions and show that they combine the best of both branchwidth and treewidth. We first give simple algorithms to transform a given tree-decomposition or branch-decomposition into a semi-nice tree-decomposition. We then give two templates for dynamic programming along a semi-nice treedecomposition, one for optimization problems over vertex subset...
متن کاملA Practical Approach to Courcelle ’ s Theorem 1 Joachim Kneis
In 1990, Courcelle showed that every problem definable in Monadic Second-Order Logic (MSO) can be solved in linear time on graphs with bounded treewidth. This powerful and important theorem is amongst others the foundation for several fixed parameter tractability results. The standard proof of Courcelle’s Theorem is to construct a finite bottom-up tree automaton that recognizes a tree decomposi...
متن کاملDomination problems on trees and their homogeneous extensions
A graph is a homogeneous extension of a tree iff the reduction of all homogeneous sets (sometimes called modules) to single vertices gives a tree. We show that these graphs can be recognized in linear sequential and polylogarithmic parallel time using modular decomposition. As an application of some results on homogeneous sets we present a linear time algorithm computing the vertex sets of the ...
متن کاملNew approximations for minimum-weighted dominating sets and minimum-weighted connected dominating sets on unit disk graphs
Given a node-weighted graph, the minimum-weighted dominating set (MWDS) problem is to find a minimum-weighted vertex subset such that, for any vertex, it is contained in this subset or it has a neighbor contained in this set. And the minimum-weighted connected dominating set (MWCDS) problem is to find a MWDS such that the graph induced by this subset is connected. In this paper, we study these ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1711.10088 شماره
صفحات -
تاریخ انتشار 2017